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Abstract 

A widespread notion in the computational chemistry literature about the Hessian 
matrix has been revisited, namely, that the Hessian matrix over Cartesian space is 
sixfold degenerate due to the three translational and three rotational degrees of freedom. 
It has been shown that this is true only at critical points on the potential energy 
hypersurface, otherwise the Hessian matrix is only threefold degenerate. The rotational 
degrees of freedom generally do not cause degeneracy in the Hessian matrix away from 
critical points. 

1. Introduction 

The Hessian matrix plays a central role in computational chemistry. Numerous 
monographs provide a detailed introduction to the calculation and use of the Hessian 
matrix [1,2]. The Hessian matrix is the matrix of the second derivatives of the 
potential energy hypersurface [3] over a nuclear configuration space representing 
the atomic arrangements of a molecule in three-dimensional space. The dimensionality 
of the nuclear configuration space depends on the coordinate system defining the 
atomic coordinates. The simplest coordinate system is the Cartesian coordinate 
system, where the atomic coordinates are simply the X, Y, Z coordinates of each 
atom. In this case, for a molecule with N atoms, the nuclear configuration space is 
a 3 * N dimensional Euclidean space, and the potential energy hypersufface over this 
3N space is a 3 * N dimensional surface embedded in the 3 * N + 1 dimensional 
Euclidean space. Numerous other coordinate systems can be used, in particular so- 
called internal coordinates, such as bond lengths, bond angles, and torsion angles, 
which provide an internal coordinate frame, i.e. a coordinate system which is independent 
of the spatial orientation of the molecule. This means that the internal coordinates 
are invariant to translation or rotation of the molecule, whereas the Cartesian coordinates 

* To whom all correspondence should be addressed. 
*On leave until January 1993 from the Department of General and Analytical Chemistry, Technical 

University Budapest, Szt. Gell6rt 4, H-1111 Budapest, Hungary. 

© J.C. Baltzer AG, Scientific Publishing Company 



360 I. Kolossv6ry, C. McMartin, Degeneracy of the Hessian matrix 

are not. In other words, an internal nuclear configuration space is only 3 * N -  6 
(3 * N - 5  for linear molecules) dimensional, six less than a Cartesian nuclear 
configuration space, corresponding to the three translational and three rotational 
degrees of freedom in the three-dimensional space in which the molecule is represented. 

There are two major areas in computational chemistry where the Hessian 
matrix is used. One is vibrational spectroscopy, and the other is energy minimization 
(geometry optimization). In vibrational analysis, the Hessian is used to calculate the 
vibrational frequencies and the atomic displacements associated with the so-called 
normal modes of vibration. The normal modes of vibration define directions in 
which the atoms vibrate in phase, i.e., there is no interference between any pairs 
of  the normal modes. There are 3 * N -  6 (3 * N -  5 for linear molecules) normal 
modes of vibration, which can be experimentally measured by vibrational spectroscopy. 
Within the harmonic approximation, i.e., when the potential energy is quadratic in 
the vicinity of the equilibrium arrangements of the atoms (for flexible molecules 
the number of such equilibrium arrangements is usually quite large), the normal 
modes of vibration can be calculated using the Hessian matrix. The eigenvalues of 
the (mass-weighted) Hessian matrix corresponding to a local minimum point of the 
potential energy hypersurface are proportional to the vibrational frequencies, and 
the eigenvectors define the directions of the normal modes of vibration for the 
corresponding equilibrium arrangement of the atoms. The Hessian matrix in Cartesian 
space at such a local minimum point (and other critical points) on the potential 
energy hypersurface has six zero eigenvalues (zero frequencies), corresponding to 
three translations and three rotations which do not generate any vibration because 
neither translation nor rotation alters the interatomic distances within the molecule. 
Since the normal modes of vibration are almost exclusively calculated for equilibrium 
atomic arrangements, the validity of these calculations, even in Cartesian space, 
certainly cannot be called into question. However, recently, the so-called extended 
normal modes of vibration have been introduced [4], and used primarily to calculate 
zero-point energies of nonequilibrium atomic arrangements, i.e., at non-critical 
points on the potential energy hypersurface [5]. It will be shown that the Hessian 
matrix in Cartesian space is only threefold degenerate at non-critical points, and 
therefore the correct formula given by Mezey [5] for zero-point energy calculations 
at non-critical points in generalized internal space, if unduly applied in Cartesian 
space, must be corrected to account for the generally non-zero rotational eigenvalues 
of the Hessian matrix. 

The other important area where the Hessian matrix is u~d  is energy minimization. 
The computational chemist devotes a large amount of time to find chemically stable 
conformations of molecules. According to theory, such stable conformations correspond 
to local minimum energy points on the potential energy hypersurface. It should be 
noted that another class of critical points besides minima, namely, saddle points, 
are also very important. The saddle points correspond to transition states interconnecting 
stable conformations. The Hessian matrix is also used to distinguish between local 
minima and saddle points [1,2]. 
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The energy minimization starts with an arbitrary, non-minimum energy structure, 
and the potential energy function is minimized over the nuclear configuration space 
to give a local minimum. During minimization, the atoms of the molecule are 
rearranged step-by-step in an iterative process, yielding lower and lower energy 
structures until convergence is reached. Convergence is reached when the gradient 
(the vector of the first derivatives of the potential energy function) vanishes. It 
should be noted that the gradient not only vanishes at minima, but at saddle points 
and multiple maxima as well. One of the best known and frequently used minimization 
methods is based on the so-called Full-Matrix Newton-Raphson (FMNR) algorithm. 
The FMNR algorithm is an iterative process which updates the atomic arrangement 
of the molecule at each iteration step by producing a displacement vector. Atoms 
are moved simultaneously along this displacement vector from their previous position 
to a new one. The consecutive new atomic arrangements usually result in a lowering 
of the energy. The displacement vector of the FMNR algorithm is the product of 
the inverse Hessian matrix and the negative of the gradient vector. The problem 
arises when the inverse of the Hessian has to be calculated in Cartesian space. Due 
to the degeneracy of the Cartesian coordinate system, the Hessian matrix has zero 
eigenvalues, which means that the Hessian matrix is singular and therefore cannot 
be inverted. There are a number of ways to eliminate the degeneracy of  the Hessian 
matrix to resolve its singularity [1]. However, all of these methods are designed to 
eliminate sixfold degeneracy (three translational and three rotational), whereas it 
will be shown that the Hessian matrix in Cartesian space, away from minima or 
other critical points, is only threefold degenerate. 

It should be noted that the degeneracy of the Hessian matrix in Cartesian 
space would automatically be eliminated by the use of internal coordinates. However, 
the majority of calculations (molecular mechanics calculations in particular) involving 
the Hessian matrix are still carried out in Cartesian space. Therefore, the use of 
extended normal modes and the application of the FMNR algorithm for energy 
minimization, in Cartesian space, requires some precaution. 

2. Discussion 

The threefold degeneracy of the Hessian matrix in Cartesian space arising 
from the translational degrees of freedom is rather trivial. There are always three 
eigenvectors of the Hessian which correspond to three mutually orthogonal translations 
of the whole molecule. Any translation of the molecule is equivalent with an appropriate 
linear combination of those three orthogonal translations. Since a translation does 
not alter the interatomic distances within the molecule, the displacement of the 
atoms along the translational eigenvector does not generate any vibration. Therefore, 
the three associated eigenvalues, i.e., the pseudo-frequencies of the translations, are 
all zeroes. 

For that matter, rotation of the whole molecule does not change the interatomic 
distances either. However, this situation is more complicated than translation. The 
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basic difference between translation and rotation is that the translational eigenvectors 
of the Hessian matrix do correspond to translations of the whole molecule, whereas 
the rotational eigenvectors do not correspond to true rotations of the molecule. The 
problem is that rotation is a nonlinear displacement, and although it can apparently 
be represented at the infinitesimal scale by a linear translation of each atom, this 
is only true to a first order of approximation. To a second order of approximation 
(implied by the use of the Hessian matrix), interatomic distances are not invariant 
to linear translation even on the infinitesimal scale. We will refer to this situation 
as a pseudo rotation. How then is pseudo rotation related to true rotation? The 
rotational eigenvector points to the direction where the atoms initially move when 
the molecule is rotated by a small angle about an appropriate axis falling through 
the centroid of the molecule. An orthogonal set of three such axes serves as a basis 
for any rotation of the molecule, i.e., any rotation of the molecule can be replaced 
by the linear combination of three rotations about the basis axes. 

To further investigate the difference between true rotation and pseudo rotations, 
let us study the problem in two dimensions. Referring back to three dimensions is 
straightforward. In two dimensions, the Cartesian coordinate system is threefold 
degenerate. There are two translations and just one rotation about the centroid of 
the (two-dimensional) molecule, which can be set to be the origin of the Cartesian 
coordinate system. In this coordinate frame, pseudo rotation can be interpreted very 
easily. A graphical representation of the difference between true rotation and pseudo 
rotation of a diatomic molecule is shown in fig. 1. True rotation about the centroid 
of the molecule by a small angle S09 moves both atoms along the circle shown in 
fig. 1. The direction of the movement of an atom during rotation is always the 
tangent of the circle at the current position of the atom. This direction is always 
perpendicular to the current position vector of the atom, since the position vector 
corresponds to the radius of the circle. The initial direction then is perpendicular 
to the atom's initial position vector, i.e., pseudo rotation moves one atom along 
vector S and the other atom along vector -S .  A small displacement of the atoms 
by pseudo rotation acts on the molecule something like a sheer, and no matter how 
small the displacement is, the distance between the two atoms does change. The 
change in distance is indicated by dashed line segments between the atomic positions 
after true rotation (filled knob on the circle) and after pseudo rotation (open knob 
on the tangent of the circle). Vectors S and - S  are the atomic displacement equivalents 
of the rotational eigenvector of the corresponding 4 × 4 Hessian matrix. /'1 and T 2 
are the translational eigenvectors, and V is the only true vibrational eigenvector 
representing the single normal mode of vibration of a diatomic molecule. 

Pseudo rotation alters the interatomic distances no matter whether or not the 
atomic arrangement corresponds to a critical or a non-critical point on the potential 
energy hypersurface. Why then is the eigenvalue of the rotational eigenvector non- 
zero only at non-critical points, but zero at critical points? The answer is best given 
by calculus. The eigenvalue of the rotational eigenvector of the Hessian matrix is 
the second derivative of the potential energy function along the direction of the 
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Fig. 1. Difference between true rotation and pseudo rotation. Molecule AB is represented 
in X-Y Cartesian space. The potential energy of the molecule is a function of the interatomic 
distance, e.g., the familiar parabolic potential energy function E = k(DAB - Do) 2, where k 
is the force constant, DAB is the actual interatomic distance, and D O is the equilibrium 
distance. The corresponding Hessian is a4 x 4 matrix with four eigenvalues and eigenvectors: 
two translational, one rotational, and one true vibrational. The atomic displacement equivalents 
of the translational eigenvectors are denoted by vectors T 1 and T 2, indicating the translation 
of the whole molecule. The rotational eigenvector decomposes into vectors S and -S.  
Displacement of atom B along vector S and atom A along vector - S  is the pseudo 
rotation which might be called a sheer in this case. Pseudo rotation alters the interatomic 
distance, which is indicated by dashed line segments between the atomic positions after 
true rotation by a small angle 5to (filled knob on the circle) and after pseudo rotation 
(open knob on the tangent of the circle). The true vibrational eigenvector decomposes into 
vectors V and -V, indicating the single normal mode of vibration of molecule AB. 

ro ta t iona l  e igenvec to r .  W e  will  re fer  to it as the pseudo  rota t ional  second  der iva t ive .  
T h e  second  de r iva t ive  o f  the potent ia l  ene rgy  funct ion  a long  the t rue ro ta t ion  can  
also be  fo rmula ted ;  howeve r ,  the true rota t ional  second der iva t ive ,  jus t  l ike true 

ro ta t ional  de r iva t ives  o f  any  order ,  is a lways  zero.  The  goal  is to show that  the 

pseudo  ro ta t ional  second  de r iva t ive  and the true ro ta t ional  second  de r iva t ive  are 
different  in general ,  but  identical  at critical points  on the potential  energy  hypersuf face .  

Def ine  the potent ia l  e n e r g y  func t ion  E o v e r  the (Xi, Yi) Car tes ian  coord ina tes  
o f  the N a toms  o f  a molecu le :  

E = E(X1, Y1, X2 . . . . .  Xlv, YN). (1) 

A l s o  d e f i n e  a d i r e c t i o n  in the  2 * N d i m e n s i o n a l  s p a c e  b y  a un i t  v e c t o r  

D = (A1, B1, AE, B a . . . . .  AN, BN). The  first  de r iva t ive  o f  E a long  D is: 
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1 OD i=1 ~ Bi " 

The second derivative of E along D is as follows: 

d2E N N 

d O 2 = Z  Z i=1 j=l 
32E 32E O2E 

3Xi3X----~. AiA j + 2  3Xi3-----~j AiB j + Oyi3---~j B iBj 1" 

(2) 

(3) 

The direction R along the rotational eigenvector is: 

..... -rN,XN), (4) 

because for a position vector (X, Y), the perpendicular vector corresponding to 
rotation by +90 degrees, is (-Y, X). With this, the second derivative of E along R, 
i.e., the eigenvalue of the rotational eigenvector, i.e., the pseudo rotational second 
derivative, can be formulated using eq. (3) as follows: 

32 E ) N r,.Xj +  XiXj 

dR2d2E = C~i=l j=lE~oxioxj oxioYj O~.3Yj (5) 

where C is a constant scaling R into a unit vector. It should be noted that in eq. (5) 
the X's and Y's are constants. 

To calculate the true rotational derivatives of E, the chain rule is applied. The 
first derivative of E with respect to the rotational angle co is: 

= - -  -~ (6) 
do) i=l ~ .  do) 3Yi ~ ) "  

To calculate the derivatives of the (X, Y) coordinates with respect to co, the rotational 
transform is needed. Rotation about the origin by a positive angle co can be written: 

X ' = X  c o s o ) - Y  sino), and Y ' = X  sin co+Y cos(o, (7) 

where X' and Y' are the new coordinates of the position vector (X, Y) after applying 
the rotation by a positive angle co. The derivatives of these transforms are: 

dX' dY' 
- - -  X s i n o ) - Y  c o s o ) = - Y ' ,  and 
do) do) 

= X  cos c o - Y  sin o) = X'. (8) 

With this, eq. (6) can be rewritten in an explicit form (X or X' is only a matter of  
preference): 
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dE 
~ 0 .  

do) i=1 
(9) 

It should be noted that in eq. (9), the X's  and Y's are not constants. Equation (9) 
is equal to zero (see above), and it is the familiar form of the law of conservation 
of momentum. 

The second derivative of E with respect to co is also equal to zero and has 
the following form: 

dZE N N Z Z 
i=1 j=l 

a2E yiyj_2 a2E a2E XiXj ~ fl 
ax,ax  ax,aY,.  ,.xj + 

aE - - l ( - r z )  0. (-1)Xi + = 
i=, al'i ) 

(lo) 

Comparison of eqs. (5) and (10) shows that the pseudo rotational second derivative 
of E and the true second rotational derivative of E behave exactly as expected, since 
eq. (10) is always equal to zero and eq. (5) is generally not. The only case when 
eq. (5) is also equal to zero is when the second term in eq. (10) vanishes. This term 
is the negative dot product of the atomic position vector and the gradient vector, 
and vanishes if and only if either the gradient vector is the zero vector (critical 
points on the potential energy hypersurface) or the position vector is perpendicular 
to the gradient vector. At first glance, this latter case might have physical significance. 
However, because the whole issue of rotational eigenvalues does not come up using 
internal coordinates, it cannot have any physical meaning, it is only a mathematical 
artifact of the degeneracy of the Cartesian coordinate system. 

Having established the theorem in two dimensions, examine the situation in 
three dimensions. In three dimensions there is an orthogonal set of three rotations 
(see above). With appropriate coordinate transformation, the three orthogonal rotational 
axes can be superimposed with the X, Y, Z axes of the Cartesian coordinate system. 
With this, the rotation about an arbitrary axis is transformed into the much simpler 
case of rotation about the coordinate axes. Indeed, the rotational transform in eq. (7) 
and its three-dimensional version (rotation above the Z axis) look very much alike; 
in fact, the only difference is that in three dimensions there is an additional term 
ensuring that the Z coordinates are intact. Because the Z coordinates are intact, they 
do not appear in any differential terms, which means that in three dimensions, 
eqs. (5) and (10) do apply for the coordinate pair X-Y. Similarly, eqs. (5) and (10) 
(with the change of coordinates) also apply for the coordinate pairs X - Z  and Y- 
Z. Therefore, the rotational eigenvalues of the Hessian matrix in three-dimensional 
Cartesian space are generally not equal to zero. Nonetheless, they are equal to zero 
at critical points on the potential energy hypersurface where the gradient vanishes. 
A further look at eqs. (5) and (10) reveals that one or more rotational eigenvalues 
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may vanish at non-critical points as well, however, only with the fulfillment of 
rather special mathematical conditions. Again, these points do not appear to have 
any physical meaning. 

3. Conclusion 

Any of the rotational eigenvalues of the Hessian matrix, i.e., eq. (5), which 
represents the pseudo rotational second derivative is not a true second derivative, 
since it is proportional to the second term in eq. (10) containing only first derivatives. 
For this reason, these eigenvalues do not contribute to the zero-point energy associated 
with the extended normal modes of vibration. Therefore, if the correct approximation 
to the zero-point energy at non-critical points introduced by Mezey [5] in generalized 
internal space should unduly be applied in Cartesian space, Mezey's formula formally 
includes the rotational eigenvalues of the Hessian matrix and those eigenvalues 
must be omitted from the summation, as implied in the formula [5]. 

As far as energy minimization is concerned, in order to resolve the singularity 
of  the Hessian matrix in Cartesian space from a strictly mathematical point of view, 
one only has to eliminate the translational degree of freedom. However, it is indeed 
very much worthwhile to constrain the rotational degrees of freedom as well, not 
because the Hessian matrix could not be inverted without it, but because in this way 
there is no minimization time wasted in rotating the molecule back and forth. The 
reason why people almost exclusively use the rotational Eckart constraints [9] in 
FMNR minimizations is not mathematical necessity, but speed. 

In summary, theoretical calculations performed in internal space involving 
the extended Hessian matrix cannot be performed in Cartesian space without considering 
the artifacts of Cartesian space on the extended Hessian matrix. Contrary to what 
has been implicitly or even explicitly [1, p. 68] suggested throughout the computational 
chemistry literature, only a handful of authors [6-8] have suggested that the rotational 
degeneracy of the Cartesian coordinate system is generally not reflected in zero 
eigenvalues associated with the rotational eigenvectors of  the Hessian matrix at 
non-critical points on the potential energy hypersurface. Our analysis has shown 
that the rotational eigenvalues of  the Hessian martix in Cartesian space are generally 
not equal to zero at non-critical points on the potential energy hypersurface; indeed, 
the absolute value of the rotational eigenvalues is proportional to the gradient of 
the potential energy function. It also means that in order to eliminate the rotational 
degeneracy of the Hessian matrix, one would have to extract the rotational eigenvectors 
themselves rather than simply looking for zero eigenvalues. 
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